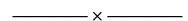
RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, JANUARY 2015


FIRST YEAR

Date : 07/01/2015 ELECTRONICS (General)

d) Enhancement type p-channel MOSFET.

Time: 11 am - 1 pm Paper: I Full Marks: 50

Answer <u>any five</u> questions of the following:		
1.	a) Draw & Explain the working principle of a PN junction diode.b) Define Fermi Level Energy.	[8] [2]
2.	The turn ratio of the transformer used in a bridge rectifier is 12:1. The primary is connected 50 Hz AC supply. Assuming the diodes as ideal, Find: a) DC voltage across the load b) PIV of each diode c) If the same DC voltage is to be obtained by C.T rectifier, what will the PIV?	to 230 V
3.	 a) What is the origin of reverse saturation current across p – n junction in reverse bias? b) If the base current changes from a 60μA to 40 mA, the collector current changes from 3 	[4] 7·3mA to
	4.8mA. Calculate the current gain.c) Draw the output characteristics of a Transistor in CB mode. Explain it.	[3] [3]
4.	 a) Describe the working principle of a JFET. b) What happens if JFET is operated beyond pinch-off case? c) Make a comparative study of BJT and FET. d) Prove that μ = r_d × g_m for FET devices. 	[2] [1] [3] [4]
5.	a) What do you mean by carrier mobility? How do you define it?b) Why is the base region kept narrow in a BJT?c) What do you mean by ohmic and non-ohmic contact? Illustrate with examples.d) Why cannot we measure the barrier potential with conventional voltmeter?	[3] [2] [3] [2]
6.	a) What is Zener Break down?b) Mention the application of Zener Diode.	[2] [3]
	c) Prove that $\beta = \frac{\alpha}{1-\alpha}$, where $\alpha \& \beta$ are the normal gain of the transistor respectively.	[3]
	d) What is Doping? How it can affect in increase the conduction capability of a semiconduct	or. [2]
7.	 Write short notes on <u>any two</u> of the following: a) LED b) Avalanche Breakdown c) Effect of doping on Fermi Level Energy in pure semiconductors. 	[2×5]

